346 research outputs found

    Valuation Strategies for Small Businesses\u27 Intangible Assets

    Get PDF
    Small business owners who attempt to sell their businesses may not receive full value if they do not adequately value their intangible assets. The purpose of this multiple case study was to explore effective strategies business leaders used to value intangible assets when considering the sale of their businesses. The participants for this study were 5 business owners in a metropolitan area in the southeastern United States who had successful valuation experiences during the sale of their businesses. Data were collected through semistructured interviews with participants, methodological triangulation, observations, and review of company documents. Data were analyzed using thematic analysis, coding narrative segments, and reviewing secondary data. The themes that emerged from data analysis include collecting and using company data concerning intangible assets; hiring a reputable accounting firm to assist in valuation; understanding the values of brand, customer base, and goodwill; and choosing the appropriate asset valuation approach. To accurately value the intangible assets of their businesses, the most significant and recurring theme in the participants\u27 responses was the need for assistance from a reputable accounting firm. The implications of this study for positive social change include the potential to enhance the economic investment in local areas where business owners appropriately value intangible assets

    Cost-Benefit Study of Post-High School Technical Education in Oklahoma

    Get PDF
    Economic

    On a new theoretical calibration of the Stroemgren hk metallicity index: NGC6522 as a first test case

    Full text link
    We present a new theoretical calibration of the Stroemgren metallicity index hk by using alpha-enhanced evolutionary models transformed into the observational plane by using atmosphere models with the same chemical mixture. We apply the new Metallicity--Index--Color (MIC) relations to a sample of 85 field red giants (RGs) and find that the difference between photometric estimates and spectroscopic measurements is on average smaller than 0.1 dex with a dispersion of sigma = 0.19 dex. The outcome is the same if we apply the MIC relations to a sample of eight RGs in the bulge globular cluster NGC6522, but the standard deviation ranges from 0.26 (hk, v-y) to 0.49 (hk, u-y). The difference is mainly caused by a difference in photometric accuracy. The new MIC relations based on the (Ca-y) color provide metallicities systematically more metal-rich than the spectroscopic ones. We found that the Ca-band is affected by Ca abundance and possibly by chromospheric activity.Comment: Accepted for publication on The Astrophysical Journal Letter

    Mass Outflow and Chromospheric Activity of Red Giant Stars in Globular Clusters II. M13 and M92

    Full text link
    High resolution spectra of 123 red giant stars in the globular cluster M13 and 64 red giant stars in M92 were obtained with Hectochelle at the MMT telescope. Emission and line asymmetries in Halpha, and Ca K are identified, characterizing motions in the extended atmospheres and seeking differences attributable to metallicity in these clusters and M15. On the red giant branch, emission in Halpha generally appears in stars with T_eff < 4500 K and log L/L_sun > 2.75. Fainter stars showing emission are asymptotic giant branch (AGB) stars or perhaps binary stars. The line-bisector for Halpha reveals the onset of chromospheric expansion in stars more luminous than log L/L_sun ~ 2.5 in all clusters, and this outflow velocity increases with stellar luminosity. However, the coolest giants in the metal-rich M13 show greatly reduced outflow in Halpha most probably due to decreased T_eff and changing atmospheric structure. The Ca K_3 outflow velocities are larger than shown by Halpha at the same luminosity and signal accelerating outflows in the chromospheres. Stars clearly on the AGB show faster chromospheric outflows in Halpha than RGB objects. While the Halpha velocities on the RGB are similar for all metallicities, the AGB stars in the metal-poor M15 and M92 have higher outflow velocities than in the metal-rich M13. Comparison of these chromospheric line profiles in the paired metal-poor clusters, M15 and M92 shows remarkable similarities in the presence of emission and dynamical signatures, and does not reveal a source of the `second-parameter' effect.Comment: 41 pages, 14 figures, 11 tables, Accepted in Astronomical Journa

    The C+N+O abundance of Omega Centauri giant stars: implications on the chemical enrichment scenario and the relative ages of different stellar populations

    Full text link
    We present a chemical-composition analysis of 77 red-giant stars in Omega Centauri. We have measured abundances for carbon and nitrogen, and combined our results with abundances of O, Na, La, and Fe that we determined in our previous work. Our aim is to better understand the peculiar chemical-enrichment history of this cluster, by studying how the total C+N+O content varies among the different-metallicity stellar groups, and among stars at different places along the Na-O anticorrelation. We find the (anti)correlations among the light elements that would be expected on theoretical ground for matter that has been nuclearly processed via high-temperature proton captures. The overall [(C+N+O)/Fe] increases by 0.5 dex from [Fe/H] -2.0 to [Fe/H] -0.9. Our results provide insight into the chemical-enrichment history of the cluster, and the measured CNO variations provide important corrections for estimating the relative ages of the different stellar populations.Comment: 26 pages, 9 figure - Accepted for publication in Ap

    Magnetic field amplification and electron acceleration to near-energy equipartition with ions by a mildly relativistic quasi-parallel plasma protoshock

    Full text link
    The prompt emissions of gamma-ray bursts are seeded by radiating ultrarelativistic electrons. Internal shocks propagating through a jet launched by a stellar implosion, are expected to amplify the magnetic field & accelerate electrons. We explore the effects of density asymmetry & a quasi-parallel magnetic field on the collision of plasma clouds. A 2D relativistic PIC simulation models the collision of two plasma clouds, in the presence of a quasi-parallel magnetic field. The cloud density ratio is 10. The densities of ions & electrons & the temperature of 131 keV are equal in each cloud. The mass ratio is 250. The peak Lorentz factor of the electrons is determined, along with the orientation & strength of the magnetic field at the cloud collision boundary. The magnetic field component orthogonal to the initial plasma flow direction is amplified to values that exceed those expected from shock compression by over an order of magnitude. The forming shock is quasi-perpendicular due to this amplification, caused by a current sheet which develops in response to the differing deflection of the incoming upstream electrons & ions. The electron deflection implies a charge separation of the upstream electrons & ions; the resulting electric field drags the electrons through the magnetic field, whereupon they acquire a relativistic mass comparable to the ions. We demonstrate how a magnetic field structure resembling the cross section of a flux tube grows in the current sheet of the shock transition layer. Plasma filamentation develops, as well as signatures of orthogonal magnetic field striping. Localized magnetic bubbles form. Energy equipartition between the ion, electron & magnetic energy is obtained at the shock transition layer. The electronic radiation can provide a seed photon population that can be energized by secondary processes (e.g. inverse Compton).Comment: 12 pages, 15 Figures, accepted to A&

    Multiple populations in Omega Centauri: a cluster analysis of spectroscopic data

    Full text link
    Omega Cen is composed of several stellar populations. Their history might allow us to reconstruct the evolution of this complex object. We performed a statistical cluster analysis on the large data set provided by Johnson and Pilachowski (2010). Stars in Omega Cen divide into three main groups. The metal-poor group includes about a third of the total. It shows a moderate O-Na anticorrelation, and similarly to other clusters, the O-poor second generation stars are more centrally concentrated than the O-rich first generation ones. This whole population is La-poor, with a pattern of abundances for n-capture elements which is very close to a scaled r-process one. The metal-intermediate group includes the majority of the cluster stars. This is a much more complex population, with an internal spread in the abundances of most elements. It shows an extreme O-Na anticorrelation, with a very numerous population of extremely O-poor and He-rich second generation stars. This second generation is very centrally concentrated. This whole population is La-rich, with a pattern of the abundances of n-capture elements that shows a strong contribution by the s-process. The spread in metallicity within this metal-intermediate population is not very large, and we might attribute it either to non uniformities of an originally very extended star forming region, or to some ability to retain a fraction of the ejecta of the core collapse SNe that exploded first, or both. As previously noticed, the metal-rich group has an Na-O correlation, rather than anticorrelation. There is evidence for the contribution of both massive stars ending their life as core-collapse SNe, and intermediate/low mass stars, producing the s-capture elements. Kinematics of this population suggests that it formed within the cluster rather than being accreted.Comment: Accepted for publication in Astronomy and Astrophysic

    Antiferromagnetic ordering in a 90 K copper oxide superconductor

    Full text link
    Using elastic neutron scattering, we evidence a commensurate antiferromagnetic Cu(2) order (AF) in the superconducting (SC) high-Tc\rm T_c cuprate YBa2(Cu1yCoy)3O7+δ\rm YBa_2(Cu_{1-y}Co_y)_3O_{7+\delta} (y=0.013, Tc\rm T_c=93 K). As in the Co-free system, the spin excitation spectrum is dominated by a magnetic resonance peak at 41 meV but with a reduced spectral weight. The substitution of Co thus leads to a state where AF and SC cohabit showing that the CuO2_2 plane is a highly antiferromagnetically polarizable medium even for a sample where Tc_c remains optimum.Comment: 3 figure
    corecore